Stochastic sampling algorithms for state estimation of jump Markov linear systems

نویسندگان

  • Arnaud Doucet
  • Andrew Logothetis
  • Vikram Krishnamurthy
چکیده

Jump Markov linear systems are linear systems whose parameters evolve with time according to a finite-state Markov chain. Given a set of observations, our aim is to estimate the states of the finite-state Markov chain and the continuous (in space) states of the linear system. The computational cost in computing conditional mean or maximum a posteriori (MAP) state estimates of the Markov chain or the state of the jump Markov linear system grows exponentially in the number of observations. In this paper, we present three globally convergent algorithms based on stochastic sampling methods for state estimation of jump Markov linear systems. The cost per iteration is linear in the data length. The first proposed algorithm is a data augmentation (DA) scheme that yields conditional mean state estimates. The second proposed scheme is a stochastic annealing (SA) version of DA that computes the joint MAP sequence estimate of the finite and continuous states. Finally, a Metropolis–Hastings DA scheme based on SA is designed to yield the MAP estimate of the finite-state Markov chain is proposed. Convergence results of the three above-mentioned stochastic algorithms are obtained. Computer simulations are carried out to evaluate the performances of the proposed algorithms. The problem of estimating a sparse signal developing from a neutron sensor based on a set of noisy data from a neutron sensor and the problem of narrowband interference suppression in spread spectrum code-division multiple-access (CDMA) systems are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative algorithms for state estimation of jump Markov linear systems

Jump Markov linear systems (JMLSs) are linear systems whose parameters evolve with time according to a finite state Markov chain. Given a set of observations, our aim is to estimate the states of the finite state Markov chain and the continuous (in space) states of the linear system. In this paper, we present original deterministic and stochastic iterative algorithms for optimal state estimatio...

متن کامل

Iterative algorithms for optimal state estimation of jump Markov linear systems

Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. We present three original deterministic and stochastic iterative algorithms for optimal state estimation of JMLS whose computational complexity at each iteration is linear in the data length. The first algorithm yields conditional mean estimates. The second algorithm ...

متن کامل

Estimation of Markovian Jump Systems with Unknown Transition Probabilities through Bayesian Sampling

Addressed is the problem of state estimation for dynamic Markovian jump systems (MJS) with unknown transitional probability matrix (TPM) of the embedded Markov chain governing the system jumps. Based on recent authors’ results, proposed is a new TPM-estimation algorithm that utilizes stochastic simulation methods (viz. Bayesian sampling) for finite mixtures’ estimation. Monte Carlo simulation r...

متن کامل

Rate estimation in partially observed Markov jump processes with measurement errors

We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and parti...

متن کامل

Particle filters for state estimation of jump Markov linear systems

Jump Markov linear systems (JMLS) are linear systems whose parameters evolve with time according to a finite state Markov chain. In this paper, our aim is to recursively compute optimal state estimates for this class of systems. We present efficient simulation-based algorithms called particle filters to solve the optimal filtering problem as well as the optimal fixed-lag smoothing problem. Our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2000